Examinando por Autor "Torres Sánchez, Jairo Eulises"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Publicación Acceso abierto Diseño de un casco para un vehículo acuático alimentado con energía solar (VAES) en la cuenca baja del río Sinú, Montería-Córdoba(2023-07-18) Benítez Pacheco, Mauricio José; Silva Bello, César Alexander; Torres Sánchez, Jairo EulisesEste estudio, se enfocó en el diseño y optimización de un perfil de una embarcación para disminuir la resistencia al avance, y, por ende, el consumo de combustible, con el fin de implementar energía solar, para el desplazamiento de dicho vehículo, mitigando el impacto ambiental por el uso de combustibles fósiles. Por medio de métodos estadísticos, se determinó las dimensiones principales del perfil para el diseño de la embarcación y con asistencia de los softwares especializados MAXSURF y ANSYS se analizaron los parámetros hidrodinámicos e hidrostáticos del modelo, como lo es el centro de gravedad, metacentro, ángulo de escora y fuerza de arrastre, obteniendo valores de resistencia menores a las embarcaciones comerciales con dimensiones iguales y una buena estabilidad longitudinal y transversal. De igual forma, se procedió a mejorar dicho diseño bajo las mismas condiciones, para disminuir el consumo de potencia, para lo cual, se obtuvo una fuerza para el casco seleccionado de 167,88 N y un valor de 120,56 N para el casco optimizado, reduciendo en 30% la potencia requerida para el funcionamiento del vehículo.Publicación Acceso abierto Estudio hidrodinámico del casco de una motonave fluvial para operar en el río Sinú que tenga la menor resistencia al avance, usando herramientas computacionales y validando los resultados con un modelo a escala(Escuela Naval de cadetes Almirante Padilla, 2023-02-23) Torres Sánchez, Jairo Eulises; Durango Álvarez, Demóstenes JoséIn the present work, a study was carried out to establish how the geometry of the hull of a four meter long vessel influences the resistance to the advance in the water of the Sinu River in the city of Monteria, Colombia, using the theories of fluid mechanics associated to naval design and with the help of computational tools, particularly the programs Maxsurf and Ansys Fluent and a scale model. The system is modeled by previously establishing the ship's mission, in which the initial conditions of the design are established such as: Maximum length, number of occupants, propulsion type, among others. With this information, a database is built, where dimensions and characteristics of some commercial models are included. By means of a linear regression, the initial dimensions of the hull are obtained, taking into account the information provided by the database. Once the initial dimensions are established and with the help of Maxsurf Modeler, the first prototype of our study is designed. The next step consists of determining a hull with a geometry that has the least resistance to the advance but that also adjusts to the mission of the ship, for this we use the information that we already have from the database and we establish three dimensional relations of the hull, such as: Beam - Length, Depth - Length and Draft - Depth, where the minimum and maximum of these relations are taken and tabulated. From this process 9 dimensions are obtained, with which 9 models with their respective geometries can be obtained, using Maxsurf Modeler. To each of these geometries the curves of the resistance to the advance as a function of the speed of the boat are determined, using the software Maxsurf Resistance. With the data obtained and the relationships of dimensions, a design of experiments was carried out, using the response surface methodology, with the objective of finding the geometry with the least resistance to the advance that fulfilled the ship's mission. These results show the region where the geometry with the lowest drag is located. The result of this study establishes that the relationship that most influences the resistance to the advance Length - Beam. To determine the drag and compare this result obtained with Maxsurf Resistance, a Computational Fluid Dynamics (CFD) analysis was used with the help of Ansys Fluent 2021 R1 software. In this study a meshing is performed, choosing a poly - hexacore mesh, which contains polyhedral and hexahedral cells that have the characteristic of combining two types of meshes (ANSYS Fluent, 2021). The ANSYS Fluent (with Fluent Meshing) module was used for the configuration of the mesh, in which three poly - hexacore meshes were created and used to carry out the mesh independence and select the appropriate mesh for the calculation of the forward resistance. Finally, a scale model (1:4) of the vessel was built to determine the total resistance to the advance by means of tests in a hydraulic test channel. These tests were carried out in the test channel of the Almirante Padilla Naval Cadet School in the city of Cartagena, Colombia. The results obtained were validated with the use of computational tools (Maxsurf and Ansys Fluent).