Show simple item record

dc.contributor.advisorPáez Arias, Franciscospa
dc.contributor.authorDiaz Soto, Cristian Camilo
dc.date.accessioned2021-01-27T17:12:49Z
dc.date.available2021-01-27T17:12:49Z
dc.date.issued2021-01-25
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/4005
dc.description.abstractIn the present work, a systematic study of the experimental behavior of the volumetric and viscometric properties for the binary system CaCl2 and D-(- )-Ribose was carried out in different concentrations of said binary in the temperature range of (283,15-308.15) K every 5K. For this purpose, the densities and flow times of the different solutions were determined using a vibrating tube digital densimeter Anton Paar DMA 5000 with an uncertainty of 1x10-05 g.cm-3 and a digital microviscometer AMVn Anton Paar GMBH with an uncertainty of 1x10-02 s respectively. From these data the apparent molar volumes were calculated ( V ), the apparent molar volumes at infinite dilution ( 0 V ), the second derivative of the apparent molar volumes at infinite dilution with temperature ( ) 2 0 2 / P V T    , molar transfer volumes ( 0 trV ), the volumetric interaction parameters ( VAB , VABB ,VABBB y VABBBB ), the absolute viscosities (  ), relative viscosities ( r ), viscosity coefficients ( AB, ), the derivative of the viscosity coefficients B with temperature, viscosity with temperature (dB dT / ) , and viscous flow activation parameters ( G , H y S ).
dc.description.tableofcontentsRESUMEN. ........................................................................................ 12spa
dc.description.tableofcontentsABSTRACT ........................................................................................ 13spa
dc.description.tableofcontents1. INTRODUCCIÓN .......................................................................... 14spa
dc.description.tableofcontents2. OBJETIVOS……………………………………………………………………..16spa
dc.description.tableofcontents2.1. OBJETIVO GENERAL…………………………………………………16spa
dc.description.tableofcontents2.2. OBJETIVOS ESPECIFICO…………………………………………16spa
dc.description.tableofcontents3. MARCO TEORICO……………………………………………………………. 17spa
dc.description.tableofcontents3.1. EL AGUA COMO SOLVENTE…………………………………………17spa
dc.description.tableofcontents3.1.1. ESTRUCTURA DEL AGUA COMO SOLVENTE………………..17spa
dc.description.tableofcontents3.1.2. SOLUCIONES CUOSAS………..……………………………………20spa
dc.description.tableofcontents3.1.3. INTERACCIONS HIDROFOBICAS………………………………...20spa
dc.description.tableofcontents3.1.4. REGIÓN DE ALTA DILUCIÓN Y REGIÓN DILUIDA……………21spa
dc.description.tableofcontents3.1.5. EFECTO DE ELECTROSTRICCIÓN………..…………………….22spa
dc.description.tableofcontents3.16. MODELO DE COESFERAS SOLAPADAS DE FRANK Y EVANS..24spa
dc.description.tableofcontents3.1.7. SOLUCIONES ACUOSAS DE SACARIDOS……………………….25spa
dc.description.tableofcontents3.1.8. ESTRUCTURA CICLICAS DE LOS MONOSACARIDOS EN SOLUCIONES ACUOSAS………………………………………………………………………28spa
dc.description.tableofcontents3.1.9 ESTRUCTURAS DE HAWORTH ……………………………………..29spa
dc.description.tableofcontents4. PROPIEDADES VOLUMETRICAS……………………………………….… 30spa
dc.description.tableofcontents4.1. DENSIDAD………………………………………………………………...30spa
dc.description.tableofcontents4.2. VOLUMEN MOLAR APARENTE (V ). .........................................31spa
dc.description.tableofcontents4.2.1. CORRELACIÓN DEL VOLUMEN MOLAR APARENTE A DILUCIÓN INFINITA ( 0 V ) CON TEMPERATURA. ............................33spa
dc.description.tableofcontents4.2.2. VOLÚMENES DE TRANSFERENCIA ( 0 trV  ). ........................33spa
dc.description.tableofcontents4.2.2.1. PARÁMETROS DE INTERACCIÓN VOLUMÉTRICOS. ........34spa
dc.description.tableofcontents4.2.3. FUNDAMENTO DEL DENSÍMETRO. .................................. 34spa
dc.description.tableofcontents5. PROPIEDADES VISCOSIMÉTRICAS………………………………………..37spa
dc.description.tableofcontents5.1. DETERMINACIÓN DE LOS COEFICIENTES B DE VISCOSIDAD. ...............................................................................39spa
dc.description.tableofcontents5.2. PARÁMETROS DE ACTIVACIÓN DE FLUJO VISCOSO. ......40spa
dc.description.tableofcontents5.3. FUNDAMENTO DEL MICROVISCOSIMÉTRO. ................... 41spa
dc.description.tableofcontents6. METODOLOGÍA. ......................................................................... 43spa
dc.description.tableofcontents6.1. REACTIVOS. ............................................................................ 43spa
dc.description.tableofcontents6.2. EQUIPOS. ............................................................................... 44spa
dc.description.tableofcontents6.3. PURIFICACIÓN DE LA D-(-)-RIBOSA. ....................................... 44spa
dc.description.tableofcontents6.4. LIMPIEZA DEL MATERIAL DE VIDRIO. .................................... 44spa
dc.description.tableofcontents6.5. PREPARACIÓN DE SOLUCIONES. ........................................... 45spa
dc.description.tableofcontents6.5.1. DETERMINACIÓN DE LA DENSIDAD. ................................... 45spa
dc.description.tableofcontents6.6. DETERMINACIÓN DE LA VISCOSIDAD. .................................. 46spa
dc.description.tableofcontents7. RESULTADOS Y DISCUSIÓN. ...................................................... 49spa
dc.description.tableofcontents7.1. PROPIEDADES VOLUMÉTRICAS ............................................. 49spa
dc.description.tableofcontents7.1.1. INCERTIDUMBRE EN LA DENSIDAD. ................................... 49spa
dc.description.tableofcontents7.2. VOLÚMENES MOLARES APARENTES (V) PARA LAS SOLUCIONES DE D-(-)-RIBOSA EN MEZCLAS ACUOSAS DE CaCl2.55spa
dc.description.tableofcontents7.2.1. Volúmenes molares aparentes a dilución infinita ( 0 V ) para las soluciones de D-(-)-ribosa en mezclas acuosas de CaCl2. ...............58spa
dc.description.tableofcontents7.2.2. Correlación de los volúmenes molares aparentes a dilución infinita ( 0 V ) con la temperatura. ...................................................60spa
dc.description.tableofcontents7.2.3. VOLÚMENES MOLARES DE TRANSFERENCIA ( 0 trV  ) PARA LA D-(-)-RIBOSA EN SOLUCIONES ACUOSAS DE CaCl2. ..................... 61spa
dc.description.tableofcontents7.2.4. Parámetros de interacción volumétricos. .............................62spa
dc.description.tableofcontents8. PROPIEDADES VISCOSIMÉTRICAS. ...................................... 64spa
dc.description.tableofcontents8.1. VISCOSIDAD ABSOLUTA ( ). .................................................64spa
dc.description.tableofcontents8.2. VISCOSIDAD RELATIVA ( r  )...............................................69spa
dc.description.tableofcontents8.2.4. PARÁMETROS DE ACTIVACIÓN DE FLUJO VISCOSO. .......75spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rightsCopyright Universidad de Córdoba, 2021spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.titleEstudio de las propiedades volumétricas y viscosimétricas de la mezcla pseudobinaria de d-(-)-ribosa en soluiones acuosas de cloruro de calcio a diferentes temperaturas (283.15K A 308.15K).spa
dc.typeTrabajo de grado - Pregradospa
dcterms.references1. Sears, null & Wong, null. Carbohydrate Mimetics: A New Strategy for Tackling the Problem of Carbohydrate-Mediated Biological Recognition. Angew. Chem. Int. Ed. Engl. 38, 2300–2324 (1999).spa
dcterms.references2. Zhuo, K., Wang, J., Yue, Y. & Wang, H. Volumetric properties for the monosaccharide (d-xylose, d-arabinose, d-glucose, d-galactose)–NaCl–water systems at 298.15 K. Carbohydrate Research 328, 383–391 (2000).spa
dcterms.references3. Zhuo, K., Chen, Y., Wang, W. & Wang, J. Volumetric and Viscosity Properties of MgSO 4 /CuSO 4 in Sucrose + Water Solutions at 298.15 K. J. Chem. Eng. Data 53, 2022–2028 (2008).spa
dcterms.references4. Samanta, T. & Saharay, S. K. Volumetric and viscometric studies of glucose in binary aqueous solutions of urea at different temperatures. The Journal of Chemical Thermodynamics 42, 1131–1135 (2010).spa
dcterms.references5. Samanta, T. & Saharay, S. K. Volumetric and viscometric studies of glucose in binary aqueous solutions of urea at different temperatures. The Journal of Chemical Thermodynamics 42, 1131–1135 (2010).spa
dcterms.references6. Dey, P. C., Motin, M. A., Biswas, T. K. & Huque, E. M. Apparent Molar Volume and Viscosity Studies on Some Carbohydrates in Solutions. Monatshefte für Chemie 134, 797–809 (2003).spa
dcterms.references7. Banipal, P. K., Aggarwal, N. & Banipal, T. S. Viscosities of Some Saccharides in Aqueous Solutions of Phosphate-Based Inorganic Salts. J. Chem. Eng. Data 61, 1992–2001 (2016).spa
dcterms.references8. Banipal, P. K., Chahal, A. K., Singh, V. & Banipal, T. S. Rheological behaviour of some saccharides in aqueous potassium chloride solutions over temperature range (288.15 to 318.15)K. The Journal of Chemical Thermodynamics 42, 1024–1035 (2010).spa
dcterms.references9. Banipal, P. K., Aggarwal, N. & Banipal, T. S. Study on interactions of saccharides and their derivatives with potassium phosphate monobasic (1:1 electrolyte) in aqueous solutions at different temperatures. Journal of Molecular Liquids 196, 291–299 (2014).spa
dcterms.references10. Banipal, P. K., Aggarwal, N. & Banipal, T. S. Effects of phosphate-based monobasic and tribasic inorganic salts on hydration characteristics of saccharides and their derivatives. Journal of Molecular Liquids 211, 78–89 (2015).spa
dcterms.references11. Banipal, P. K., Dhanjun, H. S., Sharma, S., Hundal, H. & Banipal, T. S. Effect of Sodium Sulphate on the Volumetric, Rheological and Refractometric Properties of some Disaccharides in Aqueous Solutions at Different Temperatures. Zeitschrift für Physikalische Chemie 222, 177–204 (2008).spa
dcterms.references12. Mendon�����a, �����ngela F. S. S., Magalh�����es, S. R. J., Rodrigues, S. I. M. & Lampreia, I. M. S. Apparent Molar Volumes of Proline-Leucine Dipeptide in NaCl Aqueous Solutions at 318.15 K. J Solution Chem 34, 25–32 (2005).spa
dcterms.references13. Banipal, P. K., Chahal, A. K., Singh, V. & Banipal, T. S. Rheological behaviour of some saccharides in aqueous potassium chloride solutions over temperature range (288.15 to 318.15)K. The Journal of Chemical Thermodynamics 42, 1024–1035 (2010).spa
dcterms.references14. Kumar, H., Sheetal & Sharma, S. K. Volumetric and Acoustic Behavior of d(+)-glucose and d(−)-fructose in Aqueous Trisodium Citrate Solutions at Different Temperatures. J Solution Chem 45, 1–27 (2016).spa
dcterms.references15. Kumar, H., Sheetal & Sharma, S. K. Volumetric and Acoustic Behavior of d(+)-glucose and d(−)-fructose in Aqueous Trisodium Citrate Solutions at Different Temperatures. J Solution Chem 45, 1–27 (2016).spa
dcterms.references16. Banipal, T. S., Kaur, D., Banipal, P. K. & Singh, G. Thermodynamic and transport properties of l-serine and l-threonine in aqueous sodium acetate and magnesium acetate solutions at T=298.15K. The Journal of Chemical Thermodynamics 39, 371–384 (2007).spa
dcterms.references17. Banipal, T. S., Kaur, D. & Banipal, P. K. Effect of magnesium acetate on the volumetric and transport behavior of some amino 84 acids in aqueous solutions at 298.15K. The Journal of Chemical Thermodynamics 38, 1214–1226 (2006).spa
dcterms.references18. Vasantha, T., Kumar, A., Attri, P., Venkatesu, P. & Rama Devi, R. S. Influence of biocompatible ammonium ionic liquids on the solubility of l-alanine and l-valine in water. Fluid Phase Equilibria 335, 39–45 (2012).spa
dcterms.references19. Wang, J., Yan, Z. & Lu, J. Effect of sodium caproate on the volumetric and viscometric properties of glycine, dl-α-alanine, and dl-α-amino-n-butyric acid in aqueous solutions. The Journal of Chemical Thermodynamics 36, 281–288 (2004).spa
dcterms.references20. Zhuo, K., Chen, Y., Wang, W. & Wang, J. Conductivities of CuSO4 and CdSO4 in Sucrose/Trehalose−Water Systems at 298.15 K. Ind. Eng. Chem. Res. 48, 6432–6435 (2009).spa
dcterms.references21. Sirbu, F. & Gheorghe, I. L. Study on thermophysical properties in the ternary mixture of N-methylglycine solute with (d-glucose + water) binary solvent at temperatures of 298.15, 308.15, and 318.15 K. Journal of Molecular Liquids 253, 149–159 (2018).spa
dcterms.references22. Ankita, Chand, D. & Nain, A. K. Molecular interactions of drug semicarbazide hydrochloride in aqueous-D-xylose/L-arabinose solutions at different temperatures: Volumetric, acoustic and viscometric study. The Journal of Chemical Thermodynamics 146, 106106 (2020).spa
dcterms.references23. Banipal, P. K., Banipal, T. S., Ahluwalia, J. C. & Lark, B. S. Partial molar heat capacities and volumes of transfer of some saccharides from water to aqueous sodium chloride solutions at T=298.15K. The Journal of Chemical Thermodynamics 34, 1825–1846 (2002).spa
dcterms.references24. Rani, M., Gahlyan, S., Om, H., Verma, N. & Maken, S. Ultrasonic studies of molecular interactions in binary mixtures of formamide with some isomers of butanol at 298.15K and 308.15K. Journal of Molecular Liquids 194, 100–109 (2014).spa
dcterms.references25. Iulian, O., Sîrbu, F. & Stoicescu, C. DENSITY AND APPARENT MOLAR VOLUME PREDICTION IN SOME TERNARY ELECTROLYTE SOLUTIONS. 6.spa
dcterms.references26. Kumar, H., Sheetal & Sharma, S. K. Volumetric and Acoustic Behavior of d(+)-glucose and d(−)-fructose in Aqueous Trisodium Citrate Solutions at Different Temperatures. J Solution Chem 45, 1–27 (2016).spa
dcterms.references27. Pliml, W. et al. Effects of ribose on exercise-induced ischaemia in stable coronary artery disease. The Lancet 340, 507–510 (1992).spa
dcterms.references28. Banipal, P. K., Chahal, A. K., Singh, V. & Banipal, T. S. Rheological behaviour of some saccharides in aqueous potassium chloride solutions over temperature range (288.15 to 318.15)K. The Journal of Chemical Thermodynamics 42, 1024–1035 (2010).spa
dcterms.references29. Lelong, G. et al. Translational and rotational dynamics of monosaccharide solutions. J Phys Chem B 113, 13079–13085 (2009).spa
dcterms.references30. Shamil, S., Birch, G. G. & Njoroge, S. Intrinsic viscosities and other solution properties of sugars and their possible relation to sweetness. Chem Senses 13, 457–461 (1988).spa
dcterms.references31. Kumar, A. & Atkinson, G. Thermodynamics of concentrated electrolyte mixtures. 3. Apparent molal volumes, compressibilities, and expansibilities of sodium chloride-calcium chloride mixtures from 5 to 35.degree.C. J. Phys. Chem. 87, 5504–5507 (1983).spa
dcterms.references32. Riddick, J. A., Bunger, W. B. & Sakano, T. K. Organic solvents: physical properties and methods of purification. Fourth edition. (1986).spa
dcterms.references33. Banipal, P. K., Dhanjun, H. S., Sharma, S., Hundal, H. & Banipal, T. S. Effect of Sodium Sulphate on the Volumetric, Rheological and Refractometric Properties of some Disaccharides in Aqueous Solutions at Different Temperatures. Zeitschrift für Physikalische Chemie 222, 177–204 (2008).spa
dcterms.references34. Friedman, H. L. & Krishnan, C. V. Thermodynamics of Ionic Hydration. in Aqueous Solutions of Simple Electrolytes 1–118 (Springer US, 1973). doi:10.1007/978-1-4684-2955-8_1.spa
dcterms.references35. Bhat, R., Kishore, N. & Ahluwalia, J. C. Thermodynamic studies of transfer of some amino acids and peptides from water tospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalCarbohidratospa
dc.subject.proposalInteracciones
dc.subject.proposalCosoluto
dc.subject.proposalFormador
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dc.description.resumenEn el presente trabajo se realizó un estudio sistemático del comportamiento experimental de las propiedades volumétricas y viscosimétricas para el sistema binario CaCl2 y la D-(-)-Ribosa en diferentes concentraciones de dicho binario en el intervalo de temperatura de (283,15-308,15) K cada 5K. Para tal fin se determinaron las densidades y los tiempos de flujo de las diferentes soluciones mediante un densímetro digital de tubo vibratorio Anton Paar DMA 5000 con una incertidumbre de 1x10-05 g.cm-3 y un microviscosímetro digital AMVn Anton Paar GMBH con una incertidumbre de 1x10-02 s respectivamente. A partir de estos datos fueron calculados los volúmenes molares aparentes ( ), los volúmenes molares aparentes a dilución infinita ( ), la segunda derivada de los volúmenes molares aparentes a dilución infinita con la temperatura , los volúmenes molares de transferencia ( ), los parámetros de interacción volumétricos ( , , y ),las viscosidades absolutas ( ) , las viscosidades relativa ( ) , los coeficientes de viscosidad ( ), la derivada de los coeficientes de viscosidad con la temperatura y los parámetros de activación de flujo viscoso ( , y ). Estos resultados fueron utilizados para analizar el comportamiento de las soluciones en virtud de las interacciones soluto-soluto y soluto-solvente, como también en términos de la capacidad de los diferentes solutos para comportarse como formadores o disruptores de la estructura del solvente. Entre los principales resultados destacan las fuertes interacciones soluto-solvente en todos los sistemas y el carácter disruptor del CaCl2 y de la D-(-)-ribosa sobre el agua y el solvente binario [CaCl2+H20] respectivamente.
dc.description.degreelevelPregradospa
dc.description.degreenameQuímico(a)spa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programQuímicaspa
dc.subject.keywordCarbohydrate
dc.subject.keywordInteractions
dc.subject.keywordCosolute
dc.subject.keywordFormer
dc.type.contentTextspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.description.modalityTrabajos de Investigación y/o Extensiónspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Copyright Universidad de Córdoba, 2021
Except where otherwise noted, this item's license is described as Copyright Universidad de Córdoba, 2021