Show simple item record

dc.contributor.advisorAngulo Ortíz, Alberto
dc.contributor.authorReyes Ortiz, Diany Vanessa
dc.date.accessioned2021-01-20T17:34:10Z
dc.date.available2021-01-20T17:34:10Z
dc.date.issued2021-01-18
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/3889
dc.description.abstractDesde tiempos antiguos las plantas han sido utilizadas de manera continua para tratar o prevenir diversas enfermedades y padecimientos, esto debido a la cultura tradicional y creencias populares. Lo cual ha dado pie a múltiples investigaciones en base a la extracción de fitoquímicos bioactivos. Entre los constituyentes químicos de las plantas con actividades biológicas útiles se incluyen los lignanos, que son una familia estructuralmente diversa de metabolitos segundarios de las plantas, pertenecientes al grupo de compuestos difenólicos. Se han identificados varios cientos de lignanos por lo cual han sido diversos los estudios que involucran diferentes géneros y plantas. Siendo hoy en día las semillas de linaza y sésamo las fuentes más rica conocida de estos compuestos, a los cuales se les reconoce un gran potencial como líderes estructurales explotables, ya que han mostrado tener muchas propiedades beneficiosas para la salud humana. Con la realización de este trabajo se busca dar a conocer el perfil de composición de los lignanos en diferentes plantas y sus actividades biológicas, lo cual proyectaría aún más estos metabolitos como candidatos prometedores para tratar o prevenir diversas enfermedades.spa
dc.description.tableofcontents1. RESUMEN ................................................................................................................. 8spa
dc.description.tableofcontents2. PLANTEAMIENTO DEL PROBLEMA .................................................................... 9spa
dc.description.tableofcontents3. JUSTIFICACION DEL PROBLEMA ....................................................................... 10spa
dc.description.tableofcontents4. OBJETIVOS ............................................................................................................. 11spa
dc.description.tableofcontents4.1 OBJETIVO GENERAL .......................................................................................... 11spa
dc.description.tableofcontents4.2 OBJETIVOS ESPECIFICOS .................................................................................. 11spa
dc.description.tableofcontents5. METODOLOGÍA ..................................................................................................... 12spa
dc.description.tableofcontents6. CAPITULO I: GENERALIDADES DE LOS LIGNANOS ....................................... 12spa
dc.description.tableofcontents6.1 INTRODUCCIÓN DEL TERMINO LIGNANOS .................................................. 12spa
dc.description.tableofcontents6.2 BIOSINTESIS DE LOS LIGNANOS ..................................................................... 13spa
dc.description.tableofcontents6.3 TIPOS ESQUELÉTICOS ELEMENTALES DE LOS LIGNANOS ........................ 17spa
dc.description.tableofcontents6.4 DISTRIBUCIÓN DE LIGNANOS EN LAS PLANTAS ......................................... 19spa
dc.description.tableofcontents6.5 PRINCIPALES FUENTES DE LIGNANOS .......................................................... 22spa
dc.description.tableofcontents6.6 CONTENIDO DE LIGNANOS EN LINAZA COMPARADO CON OTROS ALIMENTOS. 23spa
dc.description.tableofcontents6.7 FUNCIONES FISIOLÓGICAS DE LOS LIGNANOS EN PLANTAS Y HUMANOS 23spa
dc.description.tableofcontents6.7.1 FUNCIONES FISIOLOGICAS EN DEFENSA DE LA PLANTA. 23spa
dc.description.tableofcontents6.7.2 FUNCIONES DE LOS LIGNANOS PARA OFRECER BENEFICIOS EN LA SALUD HUMANA. 24spa
dc.description.tableofcontents6.8 LIGNANOS CON MAYOR ACTIVIDAD BIOLOGICA EXHIBIDA 25spa
dc.description.tableofcontents7. CAPITULO II: ESTRUCTURA, ORIGEN Y BIACTIVIDAD DE ALGUNOS LIGNANOS 28spa
dc.description.tableofcontents7.1 ACTIVIDAD ANTIBACTERIAL 28spa
dc.description.tableofcontents7.2 ACTIVIDAD ANTIFÚNGICA 30spa
dc.description.tableofcontents7.3 ACTIVIDAD ANTIVIRAL 32spa
dc.description.tableofcontents7.4 ACTIVIDAD ESTROGÉNICA Y ANTIESTROGÉNICA 36spa
dc.description.tableofcontents7.5 ACTIVIDAD ANTIOXIDANTE 42spa
dc.description.tableofcontents7.6 ACTIVIDAD CITOTOXICA 46spa
dc.description.tableofcontents7.7 ACTIVIDAD ANTIINFLAMATORIA 59spa
dc.description.tableofcontents7.8 ACTIVIDAD ANTIPARASITARIA 60spa
dc.description.tableofcontents7.9 ACTIVIDAD HEPAPROTECTORA 64spa
dc.description.tableofcontents8. CONCLUSIONES 66spa
dc.description.tableofcontents9. BIBLIOGRAFIA 68spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rightsCopyright Universidad de Córdoba, 2021spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.titleLignanos biológicamente activosspa
dc.typeTrabajo de grado - Pregradospa
dcterms.referencesAdfa, M., Rahmad, R., Ninomiya, M., Yudha S., S., Tanaka, K., & Koketsu, M. (2016). Antileukemic activity of lignans and phenylpropanoids of Cinnamomum parthenoxylon. Bioorganic & Medicinal Chemistry Letters, 761-764.spa
dcterms.referencesAgarwal, G., Carcache, P. J., Addo, E. M., & Kinghorn, A. D. (2020). Current status and contemporary approaches to the discovery of antitumor agents from higher plants. Biotechnology Advances, 107337.spa
dcterms.referencesAhmadDar, A., Kumar, N., & Arumugam, N. (2015). An updated method for isolation, purification and characterization of clinically important antioxidant lignans – Sesamin and sesamolin, from sesame oil. Industrial Crops and Products, 201-208.spa
dcterms.referencesAl-Sayeda, E., Ke, T.-Y., Hwang, T.-L., Chen, S.-R., Korinek, M., Chen, S.-L., y otros. (2020). Cytotoxic and anti-inflammatory effects of lignans and diterpenes from Cupressus macrocarpa. Bioorganic & Medicinal Chemistry Letters, 127127.spa
dcterms.referencesAnantachoke, N., Lovacharaporn, D., Reutrakul, V., Michel, S., Gaslonde, T., Piyachaturawat, P., y otros. (2020). Cytotoxic compounds from the leaves and stems of the endemic Thai plant Mitrephora sirikitiae. Pharmaceutical Biology, 490-497.spa
dcterms.referencesAsai, T., Matsukawa, T., Ishihara, A., & Kajiyama, S. (2016). Isolation and characterization of wound-induced compounds from the leaves of Citrus hassaku. Revista de biociencia y bioingeniería, 208-212.spa
dcterms.referencesBai, M., Wu, L.-J., Cai, Y., Wu, S.-Y., Song, X.-P., Chen, G.-Y., y otros. (2016). One new lignan derivative from the Combretum alfredii Hance. Natural Product Research, 1022-1027.spa
dcterms.referencesBashyal, B., Li, L., Bains, T., Debnath, A., & LaBarbera, D. V. (2017). Larrea tridentata: A novel source for antiparasitic agents active against Entamoeba. PLoS enfermedades tropicales desatendidas, 11 (8), e0005832.spa
dcterms.referencesBasu, P., & Maier, C. (2018). Phytoestrogens and breast cancer: In vitro anticancer activities of isoflavones, lignans, coumestans, stilbenes and their analogs and derivatives. Biomedicine & Pharmacotherapy, 1648-1666.spa
dcterms.referencesBoluda, C. J., Duque, B., & Aragón, Z. (2005). Lignanos (1): estructura y funciones en las plantas. Revista de Filoterapia, 55- 68.spa
dcterms.referencesBoluda, C. J., Duque, B., Gulyas, G., Aragón, Z., Duque, A., & Diez, F. (2005). Lignanos(2): Actividad Farmacólogica. Revista de Filoterapia, 135-148.spa
dcterms.referencesBoluda, C., Duque, B., Gulyas, G., Aragón, Z., Duque, A., & Diez, F. (2006). Lignanos (3): Enterolignanos y actividad estrogénica . Revista de Filoterapia, 45-57.spa
dcterms.referencesChhillar, H., Chopra, P., & Ashfaq, M. A. (2020). Lignans from linseed (Linum usitatissimum L.)and its allied species: Retrospect, introspect and prospect. Critical Reviews in Food Science and Nutrition, 1-23.spa
dcterms.referencesCho, J. Y., Choi, G. J., Son, S. W., Jang, K. S., Lim, H. K., Lee, S. O., y otros. (2007). Isolation and antifungal activity of lignans from Myristica fragrans against various plant pathogenic fungi. Pest Management Scienc, 935–940.spa
dcterms.referencesChun-Yu, C., Shu-Ying, L., Yan, Y., YIN, L., DI, P., LIU, H.-M., y otros. (2020). Candidate genes involved in the biosynthesis of lignan in Schisandra chinensis fruit based on transcriptome and metabolomes analysis. Chinese Journal of Natural Medicines, 1-12.spa
dcterms.referencesClaramunt, R., Farrán, A., Lopez, C., Torralba, M., & Santa Maria, D. (2013). Química Bioinorgánica . Madrid: UNED.spa
dcterms.referencesConrado, G., Grazzia, N., da Silva, A., Franco, C. H., Borsoi, C., Ramos, F., y otros. (2020). Prospecting and Identifying Phyllanthus amarus Lignans with Antileishmanial and Antitrypanosomal Activity. Planta Medica, 782-789.spa
dcterms.referencesCosta, R. S., Souza, O. P., Dias J, O. C., Silva, J. J., Hyaric, M. L., Santos, M. A., y otros. (2018). In vitro antileishmanial and antitrypanosomal activity of compounds isolated from the roots of Zanthoxylum tingoassuiba. . Revista Brasileira de Farmacognosia, 551-558.spa
dcterms.referencesCui, Q., Du, R., Liu, M., & Rong, L. (2020). Lignans and Their Derivatives from Plants as Antivirals. Molecules, 25 (1), 183.spa
dcterms.referencesDai, X., Yin, C., Guo, G., Zhang, Y., Zhao, C., Qian, J., y otros. (2018). Schisandrin B exhibits potent anticancer activity in triple negative breast cancer by inhibiting STAT3. Toxicology and applied pharmacology, 110-119.spa
dcterms.referencesDalibalta, S., Majdalawieh, A. F., & Manjikian, H. (2020). Health benefits of sesamin on cardiovascular disease and its associated risk factors. Saudi Pharmaceutical Journal.spa
dcterms.referencesDavin, L. B., Wang, H.-B., Crowell, A. L., Bedgar, D., Martin, D. M., Sarkanen, S., y otros. (1997). Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science, 362-367.spa
dcterms.referencesde Souza, J. J., Pereira, A., Jandú, J., da Paz, J., Crovella, S., dos Santos, M. T., y otros. (2017). Commiphora leptophloeos Phytochemical and Antimicrobial Characterization. Frontiers in Microbiology, 8 , 52.spa
dcterms.referencesFeng, T., Cao, W., Shen, W., Zhang, W., Gu, X. G., Tsa, H.-i., y otros. (2017). Arctigenin inhibits STAT3 and exhibits anticancer potential in human triple-negative breast cancer therapy. Oncotarget, 329–344.spa
dcterms.referencesGarcía-Huertas, P., Olmo, F., Sánchez-Moreno, M., Domínguez, J., Chahboun, R., & Triana-Chávez, O. (2018). Activity in vitro and in vivo against Trypanosoma cruzi of a furofuran lignan isolated from Piper jericoense. Experimental Parasitology, 34-42.spa
dcterms.referencesHameed, A. S., Rawat, P. S., & Meng, X. (2020). Biotransformation of dietary phytoestrogens by gut microbes: A review on bidirectional interaction between phytoestrogen metabolism and gut microbiota. Biotechnology Advances, 107576.spa
dcterms.referencesHano, C., Corbin, C., Drouet, S., Quéro, A., Rombaut, N., Savoire, R., y otros. (2017). The lignan (+)-secoisolariciresinol extracted from flax hulls is an effective protectant of. European Journal of Lipid Science and Technology, 1600219.spa
dcterms.referencesHathway, D. E. (1962). The Lignans. In Wood Extractives and their Significance to the Pulp and Paper Industries, 159-190.spa
dcterms.referencesHensel, A., Bauer, R., Heinrich, M., Spiegler, V., Kayser, O., Hempel, G., y otros. (2020). Challenges at the Time of COVID-19: Opportunities and Innovations. Planta medica, 86(10), 659.spa
dcterms.referencesIzquierdo, E., & Zarain, A. (2017). Mecanismos moleculares de los fitoestrogénos y su relación con el Cancér . Revista de Educación Bioquímica, 101-110.spa
dcterms.referencesKaur, V., Kumar, M., Kumar, A., Kaur, K., Dhillon, V. S., & Kaur, S. ( 2018). Potencial farmacoterapéutico de los fitoquímicos: implicaciones en la quimioprevención del cáncer y perspectivas futuras. Biomedicine & Pharmacotherapy, 564-586.spa
dcterms.referencesKezimana, P., Dmitriev, A. A., Kudryavtseva, A. V., Romanova, E. V., & Melnikova, N. V. (2018). Secoisolariciresinol diglucósido de linaza y sus metabolitos: biosíntesis y potencial de nutracéuticos. Frontiers in genetics, 9, 641. Kiyama, R. (2016). Biological effects induced by estrogenic activity of lignans. Tendencias en ciencia y tecnología de los alimentos, 186-196.spa
dcterms.referencesKumar, G., Silva, B., Bharathi, K., Devi, A., Kumar, P., K, A., y otros. (2020). Synthesis and biological evaluation of Schizandrin derivatives as tubulin polymerization inhibitors. Bioorganic & Medicinal Chemistry Letters, 127354.spa
dcterms.referencesLee, H., Ji, J. R., Ryoo, Z. Y., Choi, M.-S., Woo, E.-R., & Lee, D. G. (2015). Antibacterial Mechanism of (−)-Nortrachelogenin in Escherichia coli O157. Microbiología actual, 48-54.spa
dcterms.referencesLuo, Y.-Q., Liu, M., Wen, J., Wang, W.-G. H.-N., Du, X., Pu, J.-X., y otros. (2017). Dibenzocyclooctadiene lignans from Kadsura heteroclita. Fitoterapia, 150-157.spa
dcterms.referencesMacrae, W. D., & Towers, G. H. (1984). Biological activities of lignans. Phytochemutry, 1207-1220.spa
dcterms.referencesMOSS, G. P. (2000). Nomenclature of Lignans and neolignans . International union of pure and applied Chemistry, 1493–1523.spa
dcterms.referencesMou, L.-Y., Wu, H.-Y., Hu, L.-J., Wei, M., Li, J.-L., & Li, G.-P. (2020). Two new lignans from Anemone vitifolia Buch.-Ham. and their anti-inflammatory activity. Phytochemistry Letters, 133-135.spa
dcterms.referencesMoura, A., LiMA, K., Sousa, T., Marinha-Filho, J., Pessoa, C., y otros. (2018). In vitro antitumor effect of a lignan isolated from Combretum fruticosum, trachelogenin, in HCT-116 human colon cancer cells. Toxicology in Vitro, 129-136.spa
dcterms.referencesMuhit, M. A., Umehara, K., & Noguchi, H. (2016). Five furofuranone lignan glucosides from Terminalia citrina inhibit in vitro E2-enhanced breast cancer cell proliferation. Fitoterapia, 74-79.spa
dcterms.referencesNantarata, N., Muellerb, M., Lin, W.-C., Luec, S.-C., Viernsteinb, H., Chansakaowa, S., y otros. (2020). Sesaminol diglucoside isolated from black sesame seed cake and its antioxidant, anti-collagenase and anti-hyaluronidase activities. Food Bioscience, 100628.spa
dcterms.referencesNguyen, K. D., Dang, P. H., Nguyen, H. X., Nguyen, M. T., Awale, S., & Nguyen, N. T. (2017). Phytochemical and cytotoxic studies on the leaves of Calotropis gigantea. Bioorganic & Medicinal Chemistry Letters, 2902-2906.spa
dcterms.referencesNguyen, L. H., Vu, Nam, V., Thi, D. P., Litaudon, M., Roussi, F., y otros. (2020). Cytotoxic lignans from fruits of Cleistanthus tonkinensis. Fitoterapia, 104432.spa
dcterms.referencesOPS/OMS. (2019). Informe de Leishmaniasis Nº 7 - Marzo, 2019.spa
dcterms.referencesOspanov, M., Leó, F., Janar, J., Khan, I. A., & Ibrahim, M. A. (2020). Challenges and future directions of potential natural products leads against 2019-nCoV outbreak. Biología vegetal actual, 100180.spa
dcterms.referencesPrasad1, K., & Jadhav, A. (2016). Prevention and Treatment of Atherosclerosis with Flaxseed-Derived Compound. Current pharmaceutical design, 214-220.spa
dcterms.referencesRajalekshmi, D. S., Kabeer, F. A., Madhusoodhanan, A. R., Bahulayan, A. K., Prathapan, R., Prakasan, N., y otros. (2016). Anticancer activity studies of cubebin isolated from Piper cubeba and its synthetic derivatives. Bioorganic & Medicinal Chemistry Letters, 1767-1771.spa
dcterms.referencesRen, J.-l., Zhang, A.-H., & Wang, X.-J. (2020). Traditional Chinese medicine for COVID-19 treatment. Pharmacological research,, 104743.spa
dcterms.referencesSánchez-Elordi, E., Sterling, R. M., Santiago, R., de Armas, R., Vicente, C., & Legaz, M. E. (2020). Increase in cytotoxic lignans production after smut infection in sugar cane plants. Revista de fisiología vegetal, 244-153087.spa
dcterms.referencesSocrier, L., Quéro, A., Verdu, M., Song, Y., Molinié, R., Mathiron, D., y otros. (2019). Flax phenolic compounds as inhibitors of lipid oxidation: Elucidation of their mechanisms of action. Food Chemistry, 651-658.spa
dcterms.referencesSoleyman, S., Habtemariam, S., Rahim, R., & Nabavi, S. M. (2020). The what and who of dietary lignans in human health: Special focus on prooxidant and antioxidant effects. Trends in Food Science & Technology , 382-390.spa
dcterms.referencesThompson, L. U., Boucher, B. A., Liu, Z., Cotterchio, M., & Kreiger, N. (2006). Phytoestrogen Content of Foods Consumed in Canada,including Isoflavones, Lignans, and Coumestan . Nutrition and Cancer, 54(2) 184-201,.spa
dcterms.referencesValencia-Cuéllar, A., Marulanda-Sánchez, A.-P. L., Arango, L., & Calvache, J. A. (2020). Características de pacientes adultos con cáncer y su atención en el Hospital Universitario San José de Popayán, Colombia. Revista Colombiana de Cancerología, 80-87.spa
dcterms.referencesWang, L.-N., Qin, L.-L., He, J.-L., Li, X.-H., Cao, Z.-X., Gu, Y.-C., y otros. (2018). Aryl-tetralin-type lignan isolated from Sanguisorba officinalis. Journal of Asian natural products research, 999-1004.spa
dcterms.referencesWang, L.-Q. (2002). Mammalian phytoestrogens: enterodiol and enterolactone. Journal of Chromatography B, 289-309.spa
dcterms.referencesWang, Q.-h., Wang, X.-l., Bao, B.-y., Han, J.-j., & Ao, W.-l.-j. (2018). Four Lignans from Syringa pinnatifolia and Their Antioxidant Activity. Chemistry of Natural Compounds, 18 - 21spa
dcterms.referencesWukirsari, T., Nishiwaki, H., Nishi, K., Sugahara, T., Kishira, T., Yamauchi, y otros. (2016). Effect of the structure of dietary epoxylignan on its cytotoxic activity: relationship between the structure and the activity of 7,7′-epoxylignan and the introduction of apoptosis by caspase 3/7. Bioscience, Biotechnology, and Biochemistry, 669-675.spa
dcterms.referencesXin-Ya, X., Dong-Ying, W., Chuen-Fai, K., Yang, Z., Han, C., Kang-Lun, L., y otros. (2019). Anti-HIV lignans from Justicia procumbens. Revista china de medicinas naturales, 945-952.spa
dcterms.referencesXu, Y. X., Li, L.-Z., Cong, Q., Wang, W., Qi, X.-L., Peng, Y., y otros. (2017). Bioactive lignans and flavones with in vitro antioxidant and neuroprotective properties from Rubus idaeus rhizome. Revista de alimentos funcionales, 160-169.spa
dcterms.referencesXu, Y., Li, L.-Z., Cong, Q., Wang, W., Qi, X.-L., Peng, Y., y otros. (2017). Bioactive lignans and flavones with in vitro antioxidant and neuroprotective properties from Rubus idaeus rhizome. Journal of Functional Foods, 160-169.spa
dcterms.referencesYang, R., Liu, H., Bai, C., Wang, Y., Zhang, X., Gu, R., y otros. (2020). Chemical composition and pharmacological mechanism of Qingfei Paidu Decoction and Ma Xing Shi Gan Decoction against Coronavirus Disease 2019 (COVID-19): In silico and experimental study. Pharmacological research, 104820.spa
dcterms.referencesYong, Y., Shin, P. j., Le, J. H., & Lim, Y. (2009). Antitumor activity of deoxypodophyllotoxin isolated from Anthriscus sylvestris: Induction of G2/M cell cycle arrest and caspase-dependent apoptosis. Bioorganic & Medicinal Chemistry Letters, 4367-4371.spa
dcterms.referencesYong, Y., Shin, S. Y., Lee, Y. H., & Lim, Y. (2016). Estudios de actividad anticancerígena de cubebina aislada de Piper cubeba y sus derivados sintéticos. Bioorganic & Medicinal Chemistry Letters, 1767-1771.spa
dcterms.referencesZálešák, F., Bon, D. J., & Pospíšil, J. (2019). Lignans and Neolignans: Plant secondary metabolites as a reservoir of biologically active substances. Pharmacological Research, 146, 104284.spa
dcterms.referencesZater, H., Huet, J., Fontaine, V., Benayache, S., Stevigny, C., Duez, y otros. (2016). Chemical constituents, cytotoxic, antifungal and antimicrobial properties of Centaurea diluta Ait. subsp. algeriensis (Coss. & Dur.) Maire. Asian Pacific Journal of Tropical Medicine, 554-561.spa
dcterms.referencesZhang, H.-J., Rumschlag, E., Guan, Y.-F., Liu, K.-L., Wang, D.-Y., Li, W.-F., y otros. (2017). Anti-HIV diphyllin glycosides from Justicia gendarussa. Phytochemistry, 94-100.spa
dcterms.referencesZhang, H.-J., Rumschlag-Booms, E., Guan, Y.-F., Wang, D.-Y., Liu, K.-L., Li, W.-F., y otros. (2017). Potent inhibitor of drug-resistant HIV-1 strains identified from the medicinal plant Justicia gendarussa. Journal of Natural Products, 1798–1807.spa
dcterms.referencesZhang, X.-R., Zhu, H.-T., Wang, D., Yang, Z., Yang, C.-R., & Zhang, Y.-J. (2020). Termitomenins A–E: Five new lignans from Terminalia chebula var. tomentella (Kurz) C. B. Clarke. Fitoterapia, 104571.spa
dcterms.referencesZhu, L., Shen, X.-B., Yuan, P.-C., Shao, T.-L., Wang, G.-D., & Liu, X.-P. (2020). Arctigenin inhibits proliferation of ER-positive breast cancer cells through cell cycle arrest mediated by GSK3-dependent cyclin D1 degradation. Life Sciences, 117983.spa
dcterms.referencesZhu, P., Li, J., Fu, X., & Yu, Z. (2019). Schisandra fruits for the management of drug-induced liver injury in China: A review. Phytomedicine, 152760.spa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalLignanosspa
dc.subject.proposalFitoestrógenosspa
dc.subject.proposalLinazaspa
dc.subject.proposalPodofilotoxinaspa
dc.subject.proposalSecoisolariciresinolspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dc.subject.keywordsLignanseng
dc.subject.keywordsPhytoestrogenseng
dc.subject.keywordsLinseedeng
dc.subject.keywordsPodophyllotoxineng
dc.subject.keywordsSecoisolariciresinoleng
dc.description.degreelevelPregradospa
dc.description.degreenameQuímico(a)spa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMontería, Córdoba, Colombiaspa
dc.publisher.programQuímicaspa
dc.type.contentTextspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.description.modalityMonografíasspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Copyright Universidad de Córdoba, 2021
Except where otherwise noted, this item's license is described as Copyright Universidad de Córdoba, 2021