Show simple item record

dc.contributor.advisorChams Chams, Linda Maríaspa
dc.contributor.authorMorillo Bocanegra, Nellyspa
dc.coverage.spatialMontería, Córdobaspa
dc.date.accessioned2020-11-12T16:58:46Zspa
dc.date.available2020-11-12T16:58:46Zspa
dc.date.issued2020-11-11spa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/3568spa
dc.description.abstractLas enfermedades transmitidas por alimentos, son un problema de Salud Pública, donde las bacterias patógenas juegan un rol trascendental. La industria alimentaria ha implementado diversas estrategias de control para enfrentar esta situación, es así como en los últimos años esta industria viene desarrollando herramientas biotecnológicas, entre las que está la aplicación de bacteriófagos directamente en los alimentos, para evitar su contaminación con bacterias patógenas y deterioradoras. Las propiedades bactericidas de los fagos y su inocuidad para el hombre y los animales los han convertido en una alternativa segura para la industria alimenticia en el mercado internacional. De esta manera, se logrará obtener la máxima actividad reductora de la carga bacteriana, generando así un alimento más seguro. Esta revisión aborda ciertos factores a considerar para el uso de bacteriófagos como agentes bío-controladores de patógenos alimentarios, incluyendo: definición, características, aplicación en la industria alimentaria entre otros.spa
dc.description.tableofcontents1. PRESENTACIÓN.................................................................................................. 4spa
dc.description.tableofcontents2. INTRODUCCIÓN ................................................................................................. 5spa
dc.description.tableofcontents3. TEMÁTICA ............................................................................................................. 10spa
dc.description.tableofcontents3.1 BACTERIÓFAGOS .......................................................................................... 10spa
dc.description.tableofcontents3.1.1 Definición ....................................................................................................... 10spa
dc.description.tableofcontents3.1.2 Características ............................................................................................. 12spa
dc.description.tableofcontents3.2 APLICACIONES EN LA INDUSTRIA ALIMENTARIA ............................... 15spa
dc.description.tableofcontents3.2.1 Bíocontrol ................................................................................................... 16spa
dc.description.tableofcontents3.2.2 Desinfectantes ............................................................................................. 20spa
dc.description.tableofcontents3.2.3 Conservación............................................................................................... 22spa
dc.description.tableofcontents3.2.4 Coctel de fagos ............................................................................................ 23spa
dc.description.tableofcontents3.3 ASOCIACIÓN CON OTROS MATERIALES /MÉTODOS............................ 25spa
dc.description.tableofcontents4. CONCLUSIÓN ........................................................................................................ 28spa
dc.description.tableofcontents5. REFERENCIAS BIBLIOGRÁFICAS .....................................................29spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoSpaspa
dc.rightsCopyright Universidad de Córdoba, 2020spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.titleImportancia y aplicación de bacteriófagos líticos en la industria alimentariaspa
dc.typeTrabajo de grado - Pregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.description.notesMonografíaspa
dc.relation.referencesAbedon, S. T., García, P., Mullany, P., & Aminov, R. (2017). Editorial: Phage Therapy: Past, Present and Future. Frontiers in Microbiology, 8(JUN), 981. Recuperado de: https://doi.org/10.3389/fmicb.2017.00981spa
dc.relation.referencesAlegre Vilas, I., Abadias Seró, M., Colás Medà, P., Collazo Cordero, C., & Viñas Almenar, I. (2020). Bioconservación frente a patógenos de transmisión alimentaria en frutas y hortalizas mínimamente procesadas. Arbor, 196(795), 543. Recuperado de: https://doi.org/10.3989/arbor.2020.795n1007spa
dc.relation.referencesAli Gharieb, R. M., Saad, M. F., Mohamed, A. S., & Tartor, Y. H. (2020). Characterization of two novel lytic bacteriophages for reducing biofilms of zoonotic multidrug-resistant Staphylococcus aureus and controlling their growth in milk. LWT, 124, 109145. Recuperado de: https://doi.org/10.1016/j.lwt.2020.109145spa
dc.relation.referencesAlves, D., Marques, A., Milho, C., Costa, M. J., Pastrana, L. M., Cerqueira, M. A., & Sillankorva, S. M. (2019). Bacteriophage ϕIBB-PF7A loaded on sodium alginate-based films to prevent microbial meat spoilage. International Journal of Food Microbiology, 291, 121–127. Recuperado de: https://doi.org/10.1016/j.ijfoodmicro.2018.11.026spa
dc.relation.referencesCharlebois, A., Jacques, M., Boulianne, M., & Archambault, M. (2016). Tolerance of Clostridium perfringens biofilms to disinfectants commonly used in the food industry. Recuperado de: https://doi.org/10.1016/j.fm.2016.09.009spa
dc.relation.referencesCharlebois, A., Jacques, M., Boulianne, M., & Archambault, M. (2017). Tolerance of Clostridium perfringens biofilms to disinfectants commonly used in the food industry. Food Microbiology, 62, 32–38. Recuperado de: https://doi.org/10.1016/j.fm.2016.09.009spa
dc.relation.referencesChylkova, T., Cadena, M., Ferreiro, A., & Pitesky, M. (2017). Susceptibility of salmonella biofilm and planktonic bacteria to common disinfectant agents used in poultry processing. Journal of Food Protection, 80(7), 1072–1079. Recuperado de: https://doi.org/10.4315/0362-028X.JFP-16-393spa
dc.relation.referencesClavijo, V., Baquero, D., Hernandez, S., Farfan, J. C., Arias, J., Arévalo, A., … Vives-Flores, M. (2019). Phage cocktail SalmoFREE® reduces Salmonella on a commercial broiler farm. Poultry Science, 98(10), 5054–5063. Recuperado de: https://doi.org/10.3382/ps/pez251spa
dc.relation.referencesDe Jonge, P. A., Nobrega, F. L., Brouns, S. J. J., & Dutilh, B. E. (2019, January 1). Molecular and Evolutionary Determinants of Bacteriophage Host Range. Trends in Microbiology, Vol. 27, pp. 51–63. Recuperado de: https://doi.org/10.1016/j.tim.2018.08.006spa
dc.relation.referencesEl-Dougdoug, N. K., Cucic, S., Abdelhamid, A. G., Brovko, L., Kropinski, A. M., Griffiths, M. W., & Anany, H. (2019). Control of Salmonella Newport on cherry tomato using a cocktail of lytic bacteriophages. International Journal of Food Microbiology, 293, 60–71. Recuperado de: https://doi.org/10.1016/j.ijfoodmicro.2019.01.003spa
dc.relation.referencesFernández, L. Rodríguez, A. y Gutiérrez, D. (2020). Los bacteriófagos: los virus que combaten infecciones. Recuperado de: https://ezproxyucor.unicordoba.edu.co:2422/es/ereader/unicordoba/133061?page=7spa
dc.relation.referencesFernández, D. G., Llamas, L. F., González, A. R., & Suárez, P. G. (2020). BACTERIÓFAGOS Y ENDOLISINAS ENDOLYSINS IN THE FOOD. 196. Recuperado de : http://arbor.revistas.csic.es/index.php/arbor/article/view/2358/3472spa
dc.relation.referencesGong, C., & Jiang, X. (2017). Application of bacteriophages to reduce Salmonella attachment and biofilms on hard surfaces. Poultry Science, 96(6), 1838–1848. Recuperado de: https://doi.org/10.3382/ps/pew463spa
dc.relation.referencesGoodridge, L., Fong, K., Wang, S., & Delaquis, P. (2018). Bacteriophage-based weapons for the war against foodborne pathogens. Recuperado de: https://doi.org/10.1016/j.cofs.2018.03.017spa
dc.relation.referencesGouvêa, D. M., Mendonça, R. C. S., Lopez, M. E. S., & Batalha, L. S. (2016). Absorbent food pads containing bacteriophages for potential antimicrobial use in refrigerated food products. LWT - Food Science and Technology, 67, 159–166. Recuperado de: https://doi.org/10.1016/j.lwt.2015.11.043spa
dc.relation.referencesGutiérrez, D., Rodríguez-Rubio, L., Fernández, L., Martínez, B., Rodríguez, A., & García, P. (2017). Applicability of commercial phage-based products against Listeria monocytogenes for improvement of food safety in Spanish dry-cured ham and food contact surfaces. Food Control, 73, 1474–1482. Recuperado de: https://doi.org/10.1016/j.foodcont.2016.11.007spa
dc.relation.referencesGutiérrez Fernández, D., Fernández Llamas, L., Rodríguez González, A., & García Suárez, P. (2020). Bacteriófagos y endolisinas en la industria alimentaria. Arbor, 196(795), 544. Recuperado de: https://doi.org/10.3989/arbor.2020.795n1008spa
dc.relation.referencesHarada, L. K., Silva, E. C., Campos, W. F., Del Fiol, F. S., Vila, M., Dąbrowska, K., … Balcão, V. M. (2018, July 1). Biotechnological applications of bacteriophages: State of the art. Microbiological Research, Vol. 212–213, pp. 38–58. Recuperado de: https://doi.org/10.1016/j.micres.2018.04.007spa
dc.relation.referencesHernández-santiago, R., Jiménez-salas, Z., & Pla-soler, R. (2004). Aplicación de bacteriófagos en alimentos. 1(12). Recuperado de: http://respyn.uanl.mx/index.php/respyn/article/view/295/276spa
dc.relation.referencesHuang, C., Shi, J., Ma, W., Li, Z., Wang, J., Li, J., & Wang, X. (2018). Isolation, characterization, and application of a novel specific Salmonella bacteriophage in different food matrices. Food Research International, 111, 631–641. Recuperado de: https://doi.org/10.1016/j.foodres.2018.05.071spa
dc.relation.referencesIshaq, A., Ebner, P. D., Syed, Q. A., & Ubaid ur Rahman, H. (2020). Employing list-shield bacteriophage as a bio-control intervention for Listeria monocytogenes from raw beef surface and maintain meat quality during refrigeration storage. LWT, 132, 109784. Recuperado de: https://doi.org/10.1016/j.lwt.2020.109784spa
dc.relation.referencesJorquera, D., Galarce, N., & Borie, C. (2015a). El desafío de controlar las enfermedades transmitidas por alimentos: Bacteriófagos como una nueva herramienta biotecnológica. Revista Chilena de Infectologia, 32(6), 678–spa
dc.relation.referencesKim, H., Kim, Y.-T., Kim, H. B., Choi, S. H., & Lee, J.-H. (2020). Characterization of bacteriophage VVP001 and its application for the inhibition of Vibrio vulnificus causing seafood-borne diseases. Food Microbiology, 103630. Recuperado de: https://doi.org/10.1016/j.fm.2020.103630spa
dc.relation.referencesKomora, N., Maciel, C., Pinto, C. A., Ferreira, V., Brandão, T. R. S., Saraiva, J. M. A., … Teixeira, P. (2020). Non-thermal approach to Listeria monocytogenes inactivation in milk: The combined effect of high pressure, pediocin PA-1 and bacteriophage P100. Food Microbiology, 86, 103315. Recuperado de: https://doi.org/10.1016/j.fm.2019.103315spa
dc.relation.referencesKumar, R. N., Bhima, B., Kumar, P. U., & Ghosh, S. (2020). Bio-control of Salmonella spp. in carrot salad and raw chicken skin using lytic bacteriophages. LWT, 122, 109039. Recuperado de: https://doi.org/10.1016/j.lwt.2020.109039spa
dc.relation.referencesLasagabaster, A., Jiménez, E., Lehnherr, T., Miranda-Cadena, K., & Lehnherr, H. (2020). Bacteriophage Biocontrol to fight Listeria outbreaks in seafood. Food and Chemical Toxicology, 145, 111682. Recuperado de: https://doi.org/10.1016/j.fct.2020.111682spa
dc.relation.referencesLiu, A., Liu, Y., Peng, L., Cai, X., Shen, L., Duan, M., … Li, C. (2020). Characterization of the narrow-spectrum bacteriophage LSE7621 towards Salmonella Enteritidis and its Biocontrol potential on lettuce and tofu. LWT, 118, 108791. Recuperado de: https://doi.org/10.1016/j.lwt.2019.108791spa
dc.relation.referencesLiu, A., Wang, Y., Cai, X., Jiang, S., Cai, X., Shen, L., … Wang, X. (2019). Characterization of endolysins from bacteriophage LPST10 and evaluation of their potential for controlling Salmonella Typhimurium on lettuce. Recuperado de: https://doi.org/10.1016/j.lwt.2019.108372spa
dc.relation.referencesMa, Z., Bumunang, E. W., Stanford, K., Bie, X., Niu, Y. D., & McAllister, T. A. (2019). Biofilm formation by shiga toxin-producing escherichia coli on stainless steel coupons as affected by temperature and incubation time. Microorganisms, 7(4). Recuperado de: https://doi.org/10.3390/microorganisms7040095spa
dc.relation.referencesMoye, Z. D., Woolston, J., & Sulakvelidze, A. (2018a). Bacteriophage applications for food production and processing. Viruses, 10(4), 1–22. Recuperado de: https://doi.org/10.3390/v10040205spa
dc.relation.referencesOMS. (2015). Recuperado de: https://www.who.int/foodsafety/areas_work/foodbornediseases/amro_es.pdf?ua=1spa
dc.relation.referencesOMS. (2020). Inocuidad de los alimentos. Recuperado de: https://www.who.int/es/news-room/fact-sheets/detail/food-safetyspa
dc.relation.referencesPablos, C., Romero, A., de Diego, A., Vargas, C., Bascón, I., Pérez-Rodríguez, F., & Marugán, J. (2018). Novel antimicrobial agents as alternative to chlorine with potential applications in the fruit and vegetable processing industry. International Journal of Food Microbiology, 285, 92–97. Recuperado de: https://doi.org/10.1016/j.ijfoodmicro.2018.07.029spa
dc.relation.referencesRamírez, M. (2005). Actividad inhibitoria de cepas de bacterias ácido lácticas frente a bacterias patógenas y deterioradoras de alimentos. Universidad Autónoma del Estado de Hidalgo, Pachuca de Soto. Recuperado de: http://dgsa.uaeh.edu.mx:8080/bibliotecadigital/bitstream/handle/231104/236/Actividad%20inhibitoria%20de%20cepas%20de%20bacterias.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesRamírez, M., Neuman, B. W., & Ramírez, C. A. (2020). Bacteriophages as promising agents for the biological control of Moko disease (Ralstonia solanacearum) of banana. Biological Control, 149, 104238. Recuperado de: https://doi.org/10.1016/j.Biocontrol.2020.104238spa
dc.relation.referencesRuegg, P. L. (2017). A 100-Year Review: Mastitis detection, management, and prevention. Journal of Dairy Science, 100(12), 10381–10397. Recuperado de: https://doi.org/10.3168/jds.2017-13023spa
dc.relation.referencesSevilla-Navarro, S., Catalá-Gregori, P., García, C., Cortés, V., & Marin, C. (2020). Salmonella Infantis and Salmonella Enteritidis specific bacteriophages isolated form poultry faeces as a complementary tool for cleaning and disinfection against Salmonella. Comparative Immunology, Microbiology and Infectious Diseases, 68, 101405. Recuperado de: https://doi.org/10.1016/j.cimid.2019.101405spa
dc.relation.referencesShahin, K., Bouzari, M., Wang, R., & Yazdi, M. (2019). Prevalence and molecular characterization of multidrug-resistant Shigella species of food origins and their inactivation by specific lytic bacteriophages. Recuperado de:https://doi.org/10.1016/j.ijfoodmicro.2019.108252spa
dc.relation.referencesSharma, S., Chatterjee, S., Datta, S., Prasad, R., Dubey, D., Prasad, R. K., & Vairale, M. G. (2017, January 1). Bacteriophages and its applications: an overview. Folia Microbiologica, Vol. 62, pp. 17–55. Recuperado de: https://doi.org/10.1007/s12223-016-0471-xspa
dc.relation.referencesShebs-Maurine, E. L., Torres, E. S., Yeh-Parker, Y., & de Mello, A. S. (2020). Application of MS bacteriophages on contaminated trimmings reduces Escherichia coli O157 and non-O157 in ground beef. Meat Science, 170. Recuperado de: https://doi.org/10.1016/j.meatsci.2020.108243spa
dc.relation.referencesWang, C., Hang, H., Zhou, S., Niu, Y. D., Du, H., Stanford, K., & McAllister, T. A. (2020). Bacteriophage Biocontrol of Shiga toxigenic Escherichia coli (STEC) O145 biofilms on stainless steel reduces the contamination of beef. Food Microbiology, 92, 103572. Recuperado de: https://doi.org/10.1016/j.fm.2020.103572spa
dc.relation.referencesWernicki, A., Nowaczek, A., & Urban-Chmiel, R. (2017). Bacteriophage therapy to combat bacterial infections in poultry. Virology Journal, 14(1). Recuperado de: https://doi.org/10.1186/s12985-017-0849-7spa
dc.relation.referencesWójcik, E. A., Stanczyk, M., Wojtasik, A., Kowalska, J. D., Nowakowska, M., Lukasiak, M., … Dastych, J. (2020). Comprehensive evaluation of the safety and efficacy of BAFASAL® bacteriophage preparation for the reduction of salmonella in the food chain. Viruses, 12(7). Recuperado de: https://doi.org/10.3390/v12070742spa
dc.relation.referencesWoo Jun, J., Park, C., Wicklund, A., & Skurnik, M. (2018). Bacteriophages reduce Yersinia enterocolitica contamination of food and kitchenware. Recuperado de: https://doi.org/10.1016/j.ijfoodmicro.2018.02.007spa
dc.relation.referencesYin, Y., Ni, P., Liu, D., Yang, S., Almeida, A., Guo, Q., … Wang, D. (2019). Bacteriophage potential against Vibrio parahaemolyticus biofilms. Food Control, 98, 156–163. Recuperado de: https://doi.org/10.1016/j.foodcont.2018.11.034spa
dc.relation.referencesYoung Thung, T., Lee, E., Ainy Mahyudin, N., Anuradha, K., Mazlan, N., Hao Kuan, C., … Radu, S. (2019). Evaluation of a lytic bacteriophage for bio-control of Salmonella Typhimurium in different food matrices. Recuperado de: https://doi.org/10.1016/j.lwt.2019.02.033spa
dc.relation.referencesZhou, C., Zhu, M., Wang, Y., Yang, Z., Ye, M., Wu, L., … Zhang, H. (2019). Broad host range phage vB-LmoM-SH3-3 reduces the risk of Listeria contamination in two types of ready-to-eat food. Recuperado de: https://doi.org/10.1016/j.foodcont.2019.106830spa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.subject.keywordsBacteriophagesspa
dc.subject.keywordsFood safetyspa
dc.description.degreelevelPregradospa
dc.description.degreenameBacteriólogo(a)spa
dc.publisher.facultyFacultad de Ciencias de la Saludspa
dc.publisher.programBacteriologíaspa
dc.type.contentTextspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Copyright Universidad de Córdoba, 2020
Except where otherwise noted, this item's license is described as Copyright Universidad de Córdoba, 2020