Show simple item record

dc.contributor.advisorSantafé Patiño, Gilmarspa
dc.contributor.authorSalgado Giraldo, Manuel Camilospa
dc.coverage.spatialMontería, Córdobaspa
dc.date.accessioned2020-07-11T00:03:22Zspa
dc.date.available2020-07-11T00:03:22Zspa
dc.date.issued2020spa
dc.identifier.urihttps://repositorio.unicordoba.edu.co/handle/ucordoba/3272spa
dc.description.abstractEn el presente trabajo hablamos sobre la composición química y las actividades biológicas reportadas en estudios desarrollados en especies de la familia Pinnidae, específicamente del género pinna y Atrina. Se encontró que en especies como la Pinna muricata están presentes compuestos con diversas actividades biológicas y otras posibles actividades aún por determinar. La variedad de compuestos van desde los del tipo alcaloidal, esteroidal, se encontraron también reportes de compuestos nitrogenados como péptidos con actividades antimicrobianas interesantes. Se llevó a cabo una breve descripción de los resultados revelados sobre los constituyentes químicos encontrados y su relación con la actividad biológica en la que podrían ser empleados estos constituyentes.spa
dc.description.tableofcontents1. INTRODUCCIÓN 13spa
dc.description.tableofcontents2. METODOLOGIA. 17spa
dc.description.tableofcontents3. GENERALIDADES. 18spa
dc.description.tableofcontents3.1 INVERTEBRADOS MARINOS. 18spa
dc.description.tableofcontents3.2 PHYLUM MOLLUSCA. 20spa
dc.description.tableofcontents3.2.1 ACTIVIDAD BIOLOGICA EN EL PHYLUM MOLLUSCA. 21spa
dc.description.tableofcontents3.2.2 CLASIFICACION PHYLUM MOLLUSCA. 25spa
dc.description.tableofcontents3.3 CLASE BIVALVIA. 26spa
dc.description.tableofcontents3.4 LA FAMILIA PINNIDAE. 28spa
dc.description.tableofcontents3.4.1 DISTRIBUCION GEOGRÁFICA DE LA FAMILIA PINNIDAE. 30spa
dc.description.tableofcontents3.4.2 CLASIFICACION TAXONOMICA. 31spa
dc.description.tableofcontents3.4.3 LA FAMILIA PINNIDAE EN COLOMBIA. 32spa
dc.description.tableofcontents4. CONSTITUYENTES QUÍMICOS DE LA FAMILIA PINNIDAE. 34spa
dc.description.tableofcontents4.1 COMPUESTOS NITROGENADOS. 35spa
dc.description.tableofcontents4.1.1 ALCALOIDES. 36spa
dc.description.tableofcontents4.1.2 FICOTOXINAS. 37spa
dc.description.tableofcontents4.2 ESTEROLES. 42spa
dc.description.tableofcontents5. ACTIVIDAD BIOLÓGICA. 44spa
dc.description.tableofcontents5.1 ACTIVIDAD ANTRIMICROBIANA. 44spa
dc.description.tableofcontents5.2 ACTIVIDAD TOXICA. 47spa
dc.description.tableofcontents5.3 ACTIVIDAD ANTIINFLAMATORIA. 49spa
dc.description.tableofcontents6. CONCLUSIÓN. 50spa
dc.description.tableofcontents7. BIBLIOGRAFÍA. 51spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rightsCopyright Universidad de Córdoba, 2020spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titleRevisión bibliográfica sobre los componentes químicos y actividades biológicas de especies marinas pertenecientes a la familia pinnidae (mollusca)spa
dc.typeTrabajo de grado - Pregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.relation.references1. Batzer, D., Rader, R., & Wissinger, S. Invertebrates in freshwater wetlands of North America. New York: Wiley, 24–68 (2016).spa
dc.relation.references2. Beesoo, R., Bhagooli, R., Neergheen-Bhujun, V. S., Li, W.-W., Kagansky, A., & Bahorun, T. (2017). Antibacterial and antibiotic potentiating activities of tropical marine sponge extracts. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 196, 81–90. doi:10.1016/j.cbpc.2017.04.001spa
dc.relation.references3. Pastrana-Franco, Orlando J, Santafé-Patiño, Gílmar G, & Quirós-Rodríguez, Jorge A. (2016). Actividad antioxidante del erizo de mar Mellita quinquiesperforata (Leske) e identificación de sus compuestos lipídicos mayoritarios. Actualidades Biológicas, 38(104), 15-22. https://dx.doi.org/10.17533/udea.acbi.v38n104a02spa
dc.relation.references4. Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H. G., & Prinsep, M. R. (2016). Marine natural products. Natural Product Reports, 33(3), 382–431. doi:10.1039/c5np00156kspa
dc.relation.references5. QUIRÓS RODRÍGUEZ, J. A. (2014). Echinoderms in Shallow-Bottom from Ahumadera Sector, Cispatá Bay, Cordoba, Colombian Caribbean. Acta Biológica Colombiana, 20(1), 101–108. doi:10.15446/abc.v20n1.42529spa
dc.relation.references6. Jha P, Shrestha K, Chaudhary R, Shrestha B. International Conference on Biodiversity , Livelihood and Climate Change in the Himalayas. Change. 2015:4001-4001.spa
dc.relation.references7. A, R. (2019). Coral taxonomy. Retrieved 30 July 2019, from http:// www.coralscience.orgspa
dc.relation.references8. Batzer D, Boix D. Invertebrates in Freshwater Wetlands. (Cooper MJ, Uzarski DG, eds.).; 2016.spa
dc.relation.references9. Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H. G., & Prinsep, M. R. (2017). Marine natural products. Natural Product Reports, 34(3), 235–294. doi:10.1039/c6np00124fspa
dc.relation.references10. Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H. G., & Prinsep, M. R. (2015). Marine natural products. Natural Product Reports, 32(2), 116–211. doi:10.1039/c4np00144cspa
dc.relation.references11. Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A., & Prinsep, M. R. (2019). Marine natural products. Natural Product Reports. doi:10.1039/c8np00092aspa
dc.relation.references12. Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A., & Prinsep, M. R. (2020). Marine natural products. Natural Product Reports. doi:10.1039/c9np00069kspa
dc.relation.references13. Castillo-Rodríguez, Z. G. (2014). Biodiversidad de moluscos marinos en México. Revista Mexicana de Biodiversidad, 85, 419–430. doi:10.7550/rmb.33003spa
dc.relation.references14. . Vinther, J. (2014). The origins of molluscs. Palaeontology, 58(1), 19–34. doi:10.1111/pala.12140spa
dc.relation.references16. Beesoo, R., Neergheen-Bhujun, V., Bhagooli, R., & Bahorun, T. (2014). Apoptosis inducing lead compounds isolated from marine organisms of potential relevance in cancer treatment. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 768, 84–97. doi:10.1016/j.mrfmmm.2014.03.005spa
dc.relation.references17. Caccuri, F., Giagulli, C., Bugatti, A., Benetti, A., Alessandri, G., Ribatti, D., … Caruso, A. (2012). HIV-1 matrix protein p17 promotes angiogenesis via chemokine receptors CXCR1 and CXCR2. Proceedings of the National Academy of Sciences, 109(36), 14580–14585. doi:10.1073/pnas.1206605109spa
dc.relation.references18. White, A. M., Dao, K., Vrubliauskas, D., Könst, Z. A., Pierens, G. K., Mándi, A., … Vanderwal, C. D. (2017). Catalyst-Controlled Stereoselective Synthesis Secures the Structure of the Antimalarial Isocyanoterpene Pustulosaisonitrile-1. The Journal of Organic Chemistry, 82(24), 13313–13323. doi:10.1021/acs.joc.7b02421spa
dc.relation.references19. Ciavatta, M. L., García-Matucheski, S., Carbone, M., Villani, G., Nicotera, M. R., Muniain, C., & Gavagnin, M. (2017). Chemistry of Two Distinct Aeolid Spurilla Species: Ecological Implications. Chemistry & Biodiversity, 14(9), e1700125. doi:10.1002/cbdv.201700125spa
dc.relation.references20. Ahmad, T. B., Rudd, D., Benkendorff, K., Mahdi, L. K., Pratt, K.-A., Dooley, L., … Kotiw, M. (2017). Brominated indoles from a marine mollusc inhibit inflammation in a murine model of acute lung injury. PLOS ONE, 12(10), e0186904. doi:10.1371/journal.pone.0186904spa
dc.relation.references21. Ahmad, T., Rudd, D., Smith, J., Kotiw, M., Mouatt, P., Seymour, L., … Benkendorff, K. (2017). Anti-Inflammatory Activity and Structure-Activity Relationships of Brominated Indoles from a Marine Mollusc. Marine Drugs, 15(5), 133. doi:10.3390/md15050133spa
dc.relation.references22. Kilcoyne, J., McCarron, P., Twiner, M. J., Rise, F., Hess, P., Wilkins, A. L., & Miles, C. O. (2018). Identification of 21,22-Dehydroazaspiracids in Mussels (Mytilus edulis) and in Vitro Toxicity of Azaspiracid-26. Journal of Natural Products, 81(4), 885–893. doi:10.1021/acs.jnatprod.7b00973spa
dc.relation.references23. Liu, Z., Bartels, P., Sadeghi, M., Du, T., Dai, Q., Zhu, C., … Dai, Q. (2018). A novel α-conopeptide Eu1.6 inhibits N-type (CaV2.2) calcium channels and exhibits potent analgesic activity. Scientific Reports, 8(1). doi:10.1038/s41598-017-18479-4spa
dc.relation.references24. S. R. Sousa, J. R. McArthur, A. Brust, R. F. Bhola, K. J. Rosengren, L. Ragnarsson, S. Dutertre, P. F. Alewood, M. J. Christie, D. J. Adams, I. Vetter and R. J. Lewis, Scispa
dc.relation.references25. Lassudrie, M., Hégaret, H., Wikfors, G. H., & Mirella da Silva, P. (2020). Effects of marine harmful algal blooms on bivalve cellular immunity and infectious diseases: A review. Developmental & Comparative Immunology, 103660. doi:10.1016/j.dci.2020.103660spa
dc.relation.references26. Goudou, F., Petit, P., Moriou, C., Gros, O., & Al-Mourabit, A. (2017). Orbicularisine: A Spiro-Indolothiazine Isolated from Gills of the Tropical Bivalve Codakia orbicularis. Journal of Natural Products, 80(5), 1693–1696. doi:10.1021/acs.jnatprod.7b00149spa
dc.relation.references27. Jia, W., Peng, Q., Su, L., Yu, X., Ma, C., Liang, M., … Huang, Z. (2018). Novel Bioactive Peptides from Meretrix meretrix Protect Caenorhabditis elegans against Free Radical-Induced Oxidative Stress through the Stress Response Factor DAF-16/FOXO. Marine Drugs, 16(11), 444. doi:10.3390/md16110444spa
dc.relation.references28. Rangel, M. S., Mendoza, J., Freites, L., Tagliafico, A., Silva, J., & Garcia, N. (2016). Biometric and reproductive aspects of the pen shell Atrina seminuda (Bivalvia: Pinnidae) in northeastern Venezuela. Molluscan Research, 37(2), 88–97. doi:10.1080/13235818.2016.1231303spa
dc.relation.references29. García-Cubas, A. and Reguero, M., 2015. Catalogo Ilustrado De Moluscos Gasterópodos Del Golfo De Mexico Y Mar Caribe. Mexico: Universidad Nacional Autonoma de Mexico.spa
dc.relation.references30. Vazquez-Luis, M., Borg, J. A., Morell, C., Banach-Esteve, G., & Deudero, S. (2015). Influence of boat anchoring on Pinna nobilis: a field experiment using mimic units. Marine and Freshwater Research, 66(9), 786. doi:10.1071/mf14285spa
dc.relation.references31. Lemer, S., 2016. The family Pinnidae (Bivalvia) in the Philippine archipelago: observations on its distribution and phylogeography. THE NAUTILUS, 130, pp.137–145.spa
dc.relation.references32. Sturman, N., 2015. OBSERVATIONS ON PEARLS REPORTEDLY FROM THE PINNIDAE FAMILY (PEN PEARLS). gems & geology, 44, p.34.spa
dc.relation.references33. MolluscaBase eds. (2020). MolluscaBase. Pinnidae Leach, 1819. Accessed through: World Register of Marine Species at: http://www.marinespecies.org/aphia.php?p=taxdetails&id=1776 on 2020-05-2spa
dc.relation.references34. «Secondary metabolites - Knowledge Encyclopedia». www.biologyreference.com. Consultado el 21 de mayo de 2020.spa
dc.relation.references35. Kuramoto, M., Uemura, D. and Arimoto, H., 2004. Bioactive Alkaloids From The Sea: A Review. Department of Material Science, Integrated Center for Science, Ehime University, Bunkyou-chou 2-5, Matsuyama 790-8577, Japan.spa
dc.relation.references36. Kita, M., & Uemura, D. (n.d.). Bioactive Heterocyclic Alkaloids of Marine Origin. Bioactive Heterocycles I, 157–179. doi:10.1007/7081_039spa
dc.relation.references37. Blunt, J. W., Copp, B. R., Munro, M. H. G., Northcote, P. T., & Prinsep, M. R. (2010). Marine natural products. Natural Product Reports, 27(2), 165. doi:10.1039/b906091jspa
dc.relation.references38. Hong, S.-Y., Kim, D.-G., Kim, Y.-O., Park, J. Y., Seo, J.-K., Nam, B.-H., & Hong, Y.-K. (2018). Purification and cDNA cloning of the antimicrobial peptide apMolluscidin from the pen shell, Atrina pectinata. Fish & Shellfish Immunology, 81, 408–415. doi:10.1016/j.fsi.2018.07.044spa
dc.relation.references39. Urda Prieto, C., (2017). Nuevos Péptidos, Terpenos Y Alcaloides Antitumorales Aislados De Organismos Marinos. Universidade da Coruña. Departamento de Química Ambientalspa
dc.relation.references40. Mendiola J, Laguna A, Nogueiras C, Thomas OP. Nat Prod Commun. (2010) Polar alkaloids from the Caribbean marine sponge Niphates digitalis. v.5(8):pp.1187-1190.]spa
dc.relation.references41. FONFRÍA SUBIRÓS, Eva: «Ficotoxinas marinas, métodos de detección en extractos de moluscos: tesis doctoral ». Santiago de Compostela: Universidade. Servizo de Publicacións e Intercambio Científico, 2009. ISBN 978-84-9887-240-8spa
dc.relation.references42. Eva, Alonso López,. «Estudio in vitro del potencial terapéutico de las ficotoxinas en la enfermedad de Alzheimer». dspace.usc.es. Consultado el 16 de noviembre de 2015.spa
dc.relation.references43. «Estudio de los mecanismos de acción de ficotoxinas marinas / Laura Alejandra Ardilla de la Rosa Carrillo | Biblioteca Virtual Miguel de Cervantes». www.cervantesvirtual.com. Consultado el 16 de noviembre de 2015.spa
dc.relation.references44. Ficotoxinas marinas: métodos de detección en extractos de molusco. (en inglés). Univ Santiago de Compostela. Consultado el 16 de noviembre de 2015.spa
dc.relation.references45. Carson, M. W.; Kim, G.; Hentemann, M. F.; Trauner, D.; Danishefsky, S. J. Concise Stereoselective Routes to Advanced Intermediates Related to Natural and Unnatural Pinnaic Acid. Angew. Chem. Int. Ed 2001, 40, 4450–4452 [Google Scholar].spa
dc.relation.references46. Carson, M. W.; Kim, G.; Danishefsky, D. J. Total Synthesis and Proof of Stereochemistry of Natural and Unnatural Pinnaic Acids: A Remarkable Long-Range Stereochemical Effect in the Reduction of 17-Oxo Precursors of the Pinnaic Acids. Angew. Chem, Int. Ed 2001, 40, 4453–4456 [Google Scholar].spa
dc.relation.references47. Hayakawa, I.; Arimoto, H.; Uemura, D. Synthesis of (+)-Pinnaic Acid. Heterocycles 2003, 59, 441–444 [Google Scholar].spa
dc.relation.references48. Jaramillo-Madrid, A., Ashworth, J., Fabris, M. and Ralph, P., 2020. The unique sterol biosynthesis pathway of three model diatoms consists of a conserved core and diversified endpoints. Algal Research, 48, p.101902.spa
dc.relation.references49. Araujo, Francieli & Marques, Fábio & Silva, Cleuza & Santin, Silvana & Nakamura, Celso & Zamuner, Maria & Souza, Maria. (2008). Terpenes isolated of Coussarea platyphylla Müll. Arg. (Rubiaceae). Química Nova. 32. 1760-1763. 10.1590/S0100-40422009000700015.spa
dc.relation.references50. SA Mostafa1 Estimating the potential incremental benefits on Type 2 diabetes complications rates of targeting successively lower LDLcholesterol levels Diabetic Medicine 2017;34 (Suppl 1):62-63. doi:10.1111/dme.9_13304spa
dc.relation.references51. Steven P. Dehmer, Michael V. Maciosek, Amy B. LaFrance and Thomas J. Flottemesch “Health Benefits and Cost-Effectiveness of Asymptomatic Screening for Hypertension and High Cholesterol and Aspirin Counseling for Primary Prevention” The Annals of Family Medicine January 2017, 15 (1) 23-36; DOI: https://doi.org/10.1370/afm.2015spa
dc.relation.references52. Robert Sanchez, Khurram Nasir, Alexa Klimchak, Andreas Kuznik, Florence Joulain and Andrew Briggs, “delling the u.s. population health benefits of further low-density lipoprotein cholesterol reduction with alirocumab among atherosclerotic cardiovascular disease or heterozygous familial hypercholesterolemia patients with elevated low-density lipoprotein cholesterol” 2017.spa
dc.relation.references53. Kigoshi, H.; Hayashi, N.; Uemura, D. Stereoselective Synthesis of Pinnamine, an Alkaloidal Marine Toxin from Pinna muricata. Tetrahedron Lett 2001, 42, 7469–7471 [Google Scholar].spa
dc.relation.references54. Patocka J; Stredav L (23 de abril de 2002). «BRIEF REVIEW OF NATURAL NONPROTEIN NEUROTOXINS». Consultado el 19 de noviembre de 2015.spa
dc.relation.references55. Bergillos Gasion, Dr. Fernando. Toxicología clínica. Lesiones por picaduras y mordeduras de animales, Volumen 2. ISBN 978-84-686-3690-0.spa
dc.relation.references56. Schlesinger, M. and Bendas, G., 2015. Vascular Cell Adhesion Molecule‐1 (VCAM1)—An Increasing Insight Into Its Role In Tumorigenicity And Metastasis. International Journal of Cancer. Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, 53121 Bonn, Germany, pp.Int. J. Cancer: 136, 2504–2514.spa
dc.relation.references57. Liang B, Wang X, Zhang N, Yang H, Bai R, Liu M, Bian Y, Xiao C, Yang Z: 2015 Angiotensin-(1-7) Attenuates Angiotensin II-Induced ICAM-1, VCAM-1, and MCP-1 Expression via the MAS Receptor Through Suppression of P38 and NF-κB Pathways in HUVECs. Cell Physiol Biochem;35:2472-2482. doi: 10.1159/000374047spa
dc.relation.references58. Takada, N.; Uemura, N.; Suenaga, K.; Uemura, D. Structural Determination of Pteriatoxins A, B and C, Extremely Potent Toxins from the Bivalve Pteria penguin. Tetrahedron Lett 2001, 42, 3495–3497.spa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.subject.proposalPinnidaespa
dc.subject.proposalMoluscosspa
dc.subject.proposalComponentes químicosspa
dc.subject.proposalActividades biológicasspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.versionInfo:eu-repo/semantics/publishedVersionspa
dc.subject.keywordsPinnidaeeng
dc.subject.keywordsMolluscseng
dc.subject.keywordsChemical componentseng
dc.subject.keywordsBiological activitieseng
dc.description.degreelevelPregradospa
dc.description.degreenameQuímico(a)spa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.programQuímicaspa
dc.type.contentTextspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
oaire.accessrightshttp://purl.org/coar/access_right/c_16ecspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Copyright Universidad de Córdoba, 2020
Except where otherwise noted, this item's license is described as Copyright Universidad de Córdoba, 2020