

CÓDIGO:
FDOC-088
VERSIÓN: 01
EMISIÓN:
22/02/2019
PÁGINA
1 DE 4

PLAN DE CURSO

1. INFORMACIÓN BÁSICA

1.1. Facultad	Ciencias Básicas	1.2. Programa	Matemáticas		
1.3. Área	Álgebra	1.4. Curso	Teoría de Anillos y Cuerpos		
1.5. Código	408120/408238	1.6. Créditos	4	1.7. Año de actualización	2019

2. JUSTIFICACIÓN

Familiarizar al estudiante con la teoría de anillos básica y realizar un estudio detallado de los casos particulares: anillos cocientes, anillos de polinomios y campos. Esto como preámbulo a la teoría de módulos, álgebra conmutativa y otros temas de álgebra abstracta avanzada.

3. PROPÓSITOS DE FORMACIÓN

- Avanzar en el estudio de las estructuras vistas en los cursos de Álgebra lineal y Álgebra abstracta I, estudiando la estructura de Anillo.
- 🗷 Estudiar los conceptos y resultados fundamentales de la Teoría de Anillos.
- Estudiar los conceptos y resultados fundamentales de Teoría de anillos de polinomios.
- 🗷 Estudiar los conceptos y resultados fundamentales de la Teoría de campos.

4. COMPETENCIAS

CÓDIGO:FDOC-088 **VERSIÓN:** 01 **EMISIÓN:**22/02/2019 **PÁGINA**2 **DE** 4

PLAN DE CURSO

Al terminar el curso, el estudiante estará en capacidad de:

- ☑ Dominar con facilidad el concepto de anillo y sus propiedades
- ☑ Conocer y aplicar las diferentes relaciones que existen entre homomorfismo y anillos
- ☑ Manejar el concepto de ideal y sus propiedades
- ☑ Identificar y manejar de manera eficiente la estructura de los anillos conmutativos
- ☑ Tratar de manera eficiente todo lo relacionado con los anillos de cocientes y anillos de polinomios.

4.1. Transversales

- ➤ Lee comprensivamente distintos tipos de textos, mediante la aplicación de estrategias comunicativas y lingüísticas.
- > Se expresa oralmente usando apropiadamente el lenguaje científico.
- Elabora material escrito de diversos tipos con coherencia, claridad y precisión, reconociendo la intención comunicativa y el público al que va dirigido.
- > Comprende las ideas principales de textos en inglés estándar en situaciones conocidas de trabajo y de estudio.
- > Analiza, modela y elabora diferentes representaciones de una situación problema e identifica alternativas de solución y sustenta su selección con criterio profesional.
- > Busca, analiza y procesa información especializada obtenida por medio de la Internet para incorporarla en la ejecución de tareas específicas.
- > Emplea el computador para producir material en diferentes formatos (texto, gráficos, videos, hipertextos).
- > Utiliza ética y responsablemente las tecnologías de la información y la comunicación.
- ➤ Reconoce su responsabilidad profesional y personal en la sociedad, y la dimensión estética y funcional en las diversas manifestaciones de las culturas humanas.
- Analiza y propone estrategias de trabajo en equipo para enfrentar una situación o resolver conflictos en el grupo
 Posenese dilemas y situaciones associadas a problemas contemporáneos (ambientales
 - Reconoce dilemas y situaciones asociadas a problemas contemporáneos (ambientales, sociales, culturales, económicos), adopta una actitud tolerante y conciliadora proponiendo soluciones a estos.

5. CONTENIDOS

CÓDIGO: FDOC-088 VERSIÓN: 01 EMISIÓN: 22/02/2019 PÁGINA 3 DE 4

PLAN DE CURSO

✓ Bloque 1. ANILLOS

- ☑ Definición y propiedades básicas
- ☑ Dominios enteros
- ☑ Anillos y Homomorfismos
- ☑ Ideales
- ☑ Factorización en anillos conmutativos

✓ Bloque 2. ANILLOS COCIENTES

- ☑ Anillos de cocientes
- ✓ Localización

✓ Bloque 3. ANILLOS DE POLINOMIOS

- ☑ Anillos de polinomios
- ☑ Ideales en un anillo de polinomios
- ☑ Factorización en anillos de polinomios

√ Campos 4. Campos

- ☑ Campos de extensión
- ☑ Extensiones simples
- ☑ Extensiones algebraicas
- ☑ Campos de descomposición
- ☑ Extensiones separables

6. ESTRATEGIAS METODOLÓGICAS

La metodología de este curso se centra en el trabajo de docencia directa y en el trabajo independiente realizado por el estudiante.

El curso se desarrollará de la siguiente manera:

- Docencia Directa: Clases magistrales, conferencias, talleres, prácticas y laboratorios en la sala de cómputo, tutorías, trabajo de campo y otros.
- El trabajo independiente del estudiante: Lecturas, realización de talleres, solución de problemas, preparación de exposiciones, redacción de informes y ensayos, revisión bibliográfica y otros.

CÓDIGO:FDOC-088 **VERSIÓN:** 01 **EMISIÓN:**22/02/2019 **PÁGINA**4 **DE** 4

PLAN DE CURSO

7. ACTIVIDADES Y PRÁCTICAS

Se desarrollarán dos clase magistrales de dos horas cada una por semana, las cuales se dedicarán no sólo a la introducción de los contenidos sino también a desarrollar ejercicios, problemas, y ejemplos detallados y a realizar evaluaciones.

8. CRITERIOS DE EVALUACIÓN PARA EL DESARROLLO DE COMPETENCIAS

De acuerdo con el reglamento estudiantil vigente en la Universidad de Córdoba, cada nota parcial se obtendrá de la siguiente manera:

⇒ Trabajo y/o talleres
 ⇒ Exámenes cortos
 ⇒ Examen acumulativo
 30%
 40 %

La nota definitiva se obtiene haciendo el promedio aritmético de las notas parciales.

9. BIBLIOGRAFÍA

FRALEIGH, J. B. A First Course in Abstract Algebra, 2nd. Edition, Addison-Wesley, Reading, 1982.
HUNGERFORD, T. Algebra, Springer, New York, 1974.
HERSTEIN, N.Topics in Álgebra, 2nd. Edition, John Wiley, New Cork, 1975.
LANG, S. ALGEBRA, Addison-Wesley, Menlo Park, 1984.
□ BIRKHOFF, G. & MACLANE, S. Álgebra Moderna, Vicens- Vives, Barcelona, 1970.
🗀 ATYAH. M. F. and MACDONAL. I. G. Introduction to Conmutative Álgebra, Addison-
Wesley, Reading, 1969.
DUMMIT, D. & FOOTE, R. Abstrast algebra, second edition, 1999.
BOURBAKI, N. Conmutative Álgebra, Addison-Wesley, Reading, 1971.
🗀 ZARISKI, O. & SAMUEL, P. Conmutative Álgebra, Vol I, II. Van Nostrand,
Princeton,1959. Addison-Wesley, Reading, 1969.